
MODULE – 2
REQUIREMENTS ANALYSIS AND DESIGN

• Requirements→ the descriptions of the services that a system
should provide and the constraints on its operation.

• Requirements Engineering (RE)
• The process of finding out, analyzing, documenting and checking the services

and constraints of a system.

• The first stage of the software engineering process.

Lakshmi M B

User Requirements System Requirements

• Detailed description of what the

system should do.

• Detailed descriptions of the software

system’s functions, services, and

operational constraints.

• System requirements document

(sometimes called a functional

specification) should define exactly

what is to be implemented.

• Often classified as functional or non-

functional requirements.

• High-level abstract requirements

• Statements, in a natural language

plus diagrams, of what services the

system is expected to provide to

system users and the constraints

under which it must operate.

Lakshmi M B

Fig: Mental health care patient information system (Mentcare) shows how a user requirement may be expanded into
several system requirements

Lakshmi M B

Fig: Readers of different types of requirements specification

Lakshmi M B

Functional Requirements

• Statements of services the
system should provide, how the
system should react to particular
inputs, and how the system
should behave in particular
situations.

• Explicitly state what the system
should not do.

Non-functional Requirements

• Constraints on the services or
functions offered by the system.

• Include timing constraints,
constraints on the development
process, and constraints
imposed by standards.

Lakshmi M B

Functional Requirements
• Describe what the system should do.

• Depends on the type of software being developed, the expected
users of the software, and the general approach taken by the
organization when writing requirements.

• When expressed as user requirements, it should be written in natural
language so that system users and managers can understand them.

• Functional system requirements are written for system developers.

Lakshmi M B

Examples for functional requirements for the Mentcare
system:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients
who are expected to attend appointments that day.

3. Each staff member using the system shall be uniquely identified by
his or her eight-digit employee number.

Lakshmi M B

Non- functional Requirements
• Usually specify or constrain characteristics of the system as a whole.

• Often more critical than individual functional requirements.

• Failing to meet a non-functional requirement can mean that the whole system is
unusable.

• Arise through user needs because of budget constraints, organizational policies,
the need for interoperability with other software or hardware systems, or
external factors such as safety regulations or privacy legislation.

• The implementation of these requirements may be spread throughout the
system, for two reasons:

1. May affect the overall architecture of a system rather than the individual components.

2. May generate several, related functional requirements that define new system services
that are required if the non-functional requirement is to be implemented.

Lakshmi M B

Lakshmi M B

1. Product requirements → specify or constrain the runtime behavior of the software.
• Examples include how fast the system must execute, how much memory

it requires, etc.
2. Organizational requirements → broad system requirements derived from policies and procedures

in the customer’s and developer’s organizations.
• Examples include operational process requirements that define how

the system will be used; development process requirements that
specify the programming language; the development environment or
process standards to be used; and environmental requirements that
specify the operating environment of the system.

3. External requirements → derived from factors external to the system and its development process.
• Example include regulatory requirements that set out what must be done

for the system to be approved for use by a regulator, such as a nuclear
safety authority; legislative requirements that must be followed to
ensure that the system operates within the law; and ethical requirements
that ensure that the system will be acceptable to its users and the
general public.

Lakshmi M B

Lakshmi M B

Fig: Metrics for specifying non-functional requirements

Lakshmi M B

Requirements Engineering Processes

• RE involves three key activities:
1. Discovering requirements by interacting with stakeholders (elicitation and

analysis)

2. Converting these requirements into a standard form (specification)

3. Checking that the requirements actually define the system that the
customer wants (validation)

• The output of the RE process is a system requirements document.

Lakshmi M B

Lakshmi M B

Lakshmi. M. B

Requirements Elicitation
• An iterative process that can be represented as a spiral of activities—

requirements discovery, requirements classification and organization,
requirements negotiation, and requirements documentation.

• Aim → to understand the work that stakeholders do and how they
might use a new system to help support that work.

• Software engineers work with stakeholders to find out about the
application domain, work activities, the services and system features
that stakeholders want, the required performance of the system,
hardware constraints, etc.

Lakshmi. M. B

• Difficult process due to several reasons:

1. Stakeholders often don’t know what they want from a computer system
except in the most general terms.

2. Stakeholders in a system naturally express requirements in their own terms
and with implicit knowledge of their own work.

3. Different stakeholders, with diverse requirements, may express their
requirements in different ways.

4. Political factors may influence the requirements of a system.

5. The economic and business environment in which the analysis takes place
is dynamic. New requirements may emerge from new stakeholders who
were not originally consulted.

Fig: The requirements elicitation and analysis process

Lakshmi. M. B

1. Requirements discovery and understanding → interacting with
stakeholders of the system to discover their requirements.

2. Requirements classification and organization → takes the
unstructured collection of requirements, groups related
requirements and organizes them into coherent clusters.

3. Requirements prioritization and negotiation→ prioritizing
requirements and finding and resolving requirements conflicts
through negotiation.

4. Requirements documentation → The requirements are
documented and input into the next round of the spiral.

Lakshmi. M. B

Requirements Elicitation Techniques

1. Interviewing → where you talk to people about what they do.

2. Observation or ethnography → where you watch people doing
their job to see what artifacts they use, how they use them, and so
on.

Lakshmi. M. B

1. Interviewing

• Interviews may be of two types:
1. Closed interviews → where the stakeholder answers a predefined set of

questions.

2. Open interviews → in which there is no predefined agenda.

• To be an effective interviewer, you should bear two things in mind:
1. You should be open-minded, avoid preconceived ideas about the requirements,

and willing to listen to stakeholders.

2. You should prompt the interviewee to get discussions going by using a springboard
question or a requirements proposal, or by working together on a prototype
system.

Lakshmi. M. B

2. Ethnography

• An observational technique that can be used to understand operational processes
and help derive requirements for software to support these processes.

• Value → it helps discover implicit system requirements that reflect the actual
ways that people work, rather than the formal processes defined by the
organization.

• Effective for discovering two types of requirements:
1. Requirements derived from the way in which people actually work, rather than the way in

which business process definitions say they ought to work.

2. Requirements derived from cooperation and awareness of other people’s activities.

• Ethnography can be combined with the development of a system prototype.

Lakshmi. M. B

Stories and Scenarios
• Stories→ written as narrative text and present a high-level description of system

use. The advantage of stories is that everyone can easily relate to them.

• Scenarios→ usually structured with specific information collected such as inputs
and outputs. Theses are descriptions of example user interaction sessions. A
scenario starts with an outline of the interaction. During the elicitation process,
details are added to create a complete description of that interaction. A scenario
may include:

1. A description of what the system and users expect when the scenario starts.

2. A description of the normal flow of events in the scenario.

3. A description of what can go wrong and how resulting problems can be handled.

4. Information about other activities that might be going on at the same time.

5. A description of the system state when the scenario ends.

Lakshmi. M. B

Requirements Validation
• The process of checking that requirements define the system that the

customer really wants.

• Overlaps with elicitation and analysis as it is concerned with finding
problems with the requirements.

Lakshmi. M. B

• Different types of checks should be carried out on the requirements
in the requirements document:

1. Validity checks → check that the requirements reflect the real needs of
system users.

2. Consistency checks → requirements in the document should not conflict.

3. Completeness checks → requirements document should include
requirements that define all functions and the constraints intended by the
system user.

4. Realism checks → checked to ensure that they can be implemented within
the proposed budget for the system.

5. Verifiability→ system requirements should always be written so that they
are verifiable.

Lakshmi. M. B

• Requirements validation techniques that are used either individually
or in conjunction with one another:

1. Requirements reviews → the requirements are analyzed systematically by
a team of reviewers who check for errors and inconsistencies.

2. Prototyping → involves developing an executable model of a system and
using this with end-users and customers to see if it meets their needs and
expectations.

3. Test-case generation → requirements should be testable. Developing tests
from the user requirements before any code is written is an integral part of
test-driven development.

Lakshmi. M. B

Requirements Change
• One reason → systems are often developed to address problems that

cannot be completely defined.

Lakshmi. M. B

• Most changes to system requirements arise because of changes to
the business environment of the system:

1. The business and technical environment of the system always changes after
installation.

2. Requirements imposed by system customers because of organizational and
budgetary constraints may conflict with end-user requirements.

3. Priorities given to different requirements of diverse stakeholders may be
conflicting or contradictory.

Lakshmi. M. B

• As requirements are evolving, you need to keep track of individual
requirements and maintain links between dependent requirements
so that you can assess the impact of requirements changes. This
formal process for making change proposals and linking these to
system requirements is known as requirements management.

• It is often better for an independent authority, who can balance the
needs of all stakeholders, to decide on the changes that should be
accepted.

Lakshmi. M. B

Requirements management planning

• Concerned with establishing how a set of evolving requirements will be
managed.

• Issues that have to be decided:

1. Requirements identification → each requirement must be uniquely identified.

2. A change management process → the set of activities that assess the impact and
cost of changes.

3. Traceability policies → defines the relationships between each requirement and
between the requirements and the system design that should be recorded. Also
define how these records should be maintained.

4. Tool support → range from specialist requirements management systems to
shared spreadsheets and simple database systems.

Lakshmi. M. B

• Requirements management needs automated support, and the
software tools for this should be chosen during the planning phase.
You need tool support for:

1. Requirements storage → requirements should be maintained in a
secure, managed data store that is accessible to everyone involved
in the requirements engineering process.

2. Change management → simplified if active tool support is
available.

3. Traceability management → tool support for traceability allows
related requirements to be discovered.

Lakshmi. M. B

Requirements change management

• Should be applied to all proposed changes to a system’s requirements
after the requirements document has been approved.

• It is essential because you need to decide if the benefits of
implementing new requirements are justified by the costs of
implementation.

• The advantage of using a formal process for change management is
that all change proposals are treated consistently and changes to the
requirements document are made in a controlled way.

Lakshmi. M. B

• 3 principal stages to a change management process:
1. Problem analysis and change specification → starts with an identified

requirements problem or, sometimes, with a specific change proposal. It is then
analyzed to check whether it is valid. This analysis is fed back to the change
requestor who may respond with a more specific requirements change proposal,
or decide to withdraw the request.

2. Change analysis and costing → assessed using traceability information and
general knowledge of the system requirements. The cost of making the change is
estimated in terms of modifications to the requirements document. Once this
analysis is completed, a decision is made as to whether or not to proceed with the
requirements change.

3. Change implementation → The requirements document and, the system design
and implementation, are modified. Organize the requirements document so that
changes can be done without extensive rewriting or reorganization. Changeability
in documents is achieved by minimizing external references and making the
document sections as modular as possible. Thus, individual sections can be
changed and replaced without affecting other parts of the document.

Lakshmi. M. B

Traceability Matrix
• A table type document that is used in the development of software application to

trace requirements.

• It can be used for both forward (from Requirements to Design or Coding) and
backward (from Coding to Requirements) tracing.

• It is also known as Requirement Traceability Matrix (RTM) or Cross Reference
Matrix (CRM).

• It is prepared before the test execution process to ensure that every requirement
is covered in the form of a Test case so that we don't miss out any testing.

• We map all the requirements and corresponding test cases to ensure that we
have written all the test cases for each condition.

Lakshmi. M. B

• The traceability matrix can be classified into three different
types which are as follows:

1. Forward traceability

2. Backward or reverse traceability

3. Bi-directional traceability

Forward Traceability Backward Traceability Bi-directional Traceability

• Used to ensure that every
business's needs or requirements
are executed correctly in the
application and also tested
rigorously.

• Requirements are mapped into the
forward direction to the test cases.

• Used to check that we are not
increasing the space of the product
by enhancing the design elements,
code, test other things which are
not mentioned in the business
needs.

• Requirements are mapped into the
backward direction to the test
cases.

• A combination of forwarding and
backward traceability matrix.

• Used to make sure that all the
business needs are executed in the
test cases.

• Also evaluates the modification in
the requirement which is occurring
due to the bugs in the application.

Lakshmi. M. B

• Goals of Traceability Matrix:
• It helps in tracing the documents that are developed during various phases of SDLC.

• It ensures that the software completely meets the customer's requirements.

• It helps in detecting the root cause of any bug.

• Advantages of RTM:
• With the help of the RTM document, we can display the complete test execution and

bugs status based on requirements.

• It is used to show the missing requirements or conflicts in documents.

• We can ensure the complete test coverage, which means all the modules are tested.

• It will also consider the efforts of the testing teamwork towards reworking or
reconsidering on the test cases.

DEVELOPING USE CASES
• Use case → a list of actions or event steps typically defining the

interactions between a role (known in the Unified Modeling Language
(UML) as an actor) and a system to achieve a goal. The actor can be a
human or other external system.

• A use case tells a stylized story about how an end user interacts with
the system under a specific set of circumstances.

• Regardless of its form, a use case depicts the software or system from
the end user’s point of view.

Lakshmi M B

• The first step in writing a use case is to define the set of “actors” that
will be involved in the story.

• Actors represent the roles that people (or devices) play as the system
operates. An actor is anything that communicates with the system or
product and that is external to the system itself.

• An actor and an end user are not necessarily the same thing.

• A typical user may play a number of different roles when using a
system, whereas an actor represents a class of external entities
(often, but not always, people) that play just one role in the context
of the use case.

Lakshmi M B

• Ex: consider a machine operator (a user) who interacts with the
control computer for a manufacturing cell that contains a number of
robots and numerically controlled machines.

• After careful review of requirements, the software for the control
computer requires 4 different modes (roles) for interaction:
programming mode, test mode, monitoring mode, and
troubleshooting mode. Therefore, 4 actors can be defined →
programmer, tester, monitor, and troubleshooter.

Lakshmi M B

• It is possible to identify primary actors during the first iteration and
secondary actors as more is learned about the system.

• Primary actors → interact to achieve required system function and
derive the intended benefit from the system. They work directly and
frequently with the software.

• Secondary actors → support the system so that primary actors can
do their work.

• Once actors have been identified, use cases can be developed.

Lakshmi M B

• A number of questions should be answered by a use case: -
1. Who is the primary actor, the secondary actor(s)?

2. What are the actor’s goals?

3. What preconditions should exist before the story begins?

4. What main tasks or functions are performed by the actor?

5. What exceptions might be considered as the story is described?

6. What variations in the actor’s interaction are possible?

7. What system information will the actor acquire, produce, or change?

8. Will the actor have to inform the system about changes in the external
environment?

9. What information does the actor desire from the system?

10. Does the actor wish to be informed about unexpected changes?

Lakshmi M B

• Ex: basic SafeHome requirements define 4 actors:
1. homeowner (a user),

2. setup manager (likely the same person as homeowner, but playing a different role),

3. sensors (devices attached to the system), and

4. the monitoring and response subsystem (the central station that monitors the SafeHome
home security function).

• For the purposes of this example, we consider only the homeowner actor. The
homeowner actor interacts with the home security function in a number of
different ways using either the alarm control panel or a PC.

• The homeowner:
1. Enters a password to allow all other interactions,

2. Inquires about the status of a security zone,

3. Inquires about the status of a sensor,

4. Presses the panic button in an emergency, and

5. Activates/deactivates the security system.

Lakshmi M B

• Considering the situation in which the homeowner uses the control panel,
the basic use case for system activation follows:

Lakshmi M B

• Template for detailed descriptions of use cases:

Lakshmi M B

Lakshmi M B

Lakshmi M B

Fig: personas, scenarios, and user stories lead to features that might be implemented in a software product.

Lakshmi M B

PERSONAS
• Personas are about “imagined users,” character portraits of types of

user that you think might adopt your product.

• Ex: if your product is aimed at managing appointments for dentists,
you might create a dentist persona, a receptionist persona, and a
patient persona.

• Personas of different types of users help you imagine what these
users may want to do with your software and how they might use it.

• They also help you envisage difficulties that users might have in
understanding and using product features.

Lakshmi M B

• Persona should include the following :
• Description about the the users’ backgrounds

• Description about why the users might want to use your product

• Description about their education and technical skills.

Lakshmi M B

• There is no standard way of representing a persona.

Lakshmi M B

Lakshmi M B

• In general, you don’t need more than 5 personas to help identify the
key features of a system.

• Personas should be relatively short and easy to read.

• Personas are a tool that allows team members to “step into the users’
shoes.” Instead of thinking about what they would do in a particular
situation, they can imagine how a persona would behave and react.

• They can help you check your ideas to ensure that you are not
including product features that aren’t really needed.

• They help you to avoid making unwarranted assumptions, based on
your own knowledge, and designing an overcomplicated or irrelevant
product.

Lakshmi M B

• Proto-personas → Personas that are developed on the basis of
limited user information.

• Proto-personas may be created as a collective team exercise using
whatever information is available about potential product users.

• They can never be as accurate as personas developed from detailed
user studies.

• They represent the product users as seen by the development team.

• They allow the developers to build a common understanding of the
potential product users.

Lakshmi M B

scenarios
• A scenario is a narrative that describes a situation in which a user is using your

product’s features to do something that they want to do.

• It should briefly explain the user’s problem and present an imagined way that the
problem might be solved.

• Scenarios are high-level stories of system use.

• They should describe a sequence of interactions with the system but should not
include details of these interactions.

• They are the basis for both use cases, which are extensively used in object-
oriented methods, and user stories, which are used in agile methods.

• Scenarios are used in the design of requirements and system features, in system
testing, and in user interface design.

Lakshmi M B

Lakshmi M B

• Narrative, high-level scenarios, are primarily a means of facilitating
communication and stimulating design creativity.

• They are effective in communication because they are
understandable and accessible to users and to people responsible for
funding and buying the system.

• Like personas, they help developers to gain a shared understanding of
the system that they are creating.

• Scenarios are not specifications. They lack detail, they may be
incomplete, and they may not represent all types of user interactions.

Lakshmi M B

Lakshmi M B

• Structured scenarios should include different fields such as :
• what the user sees at the beginning of a scenario,

• a description of the normal flow of events,

• a description of what might go wrong, and so on.

• At the early stages of product design, the scenarios be narrative
rather than structured.

Lakshmi M B

Lakshmi M B

Writing Scenarios

• Start with the personas that you have created.

• Try to imagine several scenarios for each persona.

• Not necessary to include every details you think users might do with your
product.

• Scenarios should always be written from the user’s perspective and should
be based on identified personas or real users.

• Scenario writing is not a systematic process and different teams approach
it in different ways.

• Writing scenarios always gives you ideas for the features that you can
include in the system.

Lakshmi M B

User stories
• These are finer-grain narratives that set out in a more detailed and

structured way a single thing that a user wants from a software

system.

• User stories are not intended for planning but for helping with feature

identification.

• Aim to develop stories that are helpful in one of 2 ways:

• as a way of extending and adding detail to a scenario;

• as part of the description of the system feature that you have identified.

Lakshmi M B

Lakshmi M B

• When you define user stories from a scenario, you provide more
information to developers to help them design the product’s features.

• If you are writing stories to be part of a product backlog, you should
avoid negative stories.

• Scenarios and stories are helpful in both choosing and designing
system features.

• Scenarios and user stories can be thought of as “tools for thinking”
about a system rather than a system specification. They don’t have to
be complete or consistent, and there are no rules about how many of
each you need.

Lakshmi M B

Feature identification
• A feature is a way of allowing users to access and use your product’s

functionality so that the feature list defines the overall functionality of the
system.

• Identify the product features that are independent, coherent and relevant:

1. Independence→ A feature should not depend on how other system features are
implemented and should not be affected by the order of activation of other
features.

2. Coherence Features → should be linked to a single item of functionality. They
should not do more than one thing, and they should never have side effects.

3. Relevance System features → should reflect the way users normally carry out
some task. They should not offer obscure functionality that is rarely required.

Lakshmi M B

Lakshmi M B

Lakshmi M B

Lakshmi M B

1. Simplicity and functionality → a simple, easy-to-use system and
including enough functionality to attract users with a variety of
needs.

2. Familiarity and novelty → Users prefer that new software should
support the familiar everyday tasks that are part of their work or
life. To encourage users to adopt your system, you need to include
new features that will convince users that your product can do
more than its competitors.

3. Automation and control→ think carefully about what can be
automated, how it is automated, and how users can configure the
automation so that the system can be tailored to their preferences.

Lakshmi M B

• One problem that product developers should be aware of and try to
avoid is “feature creep.”

• Feature creep → the number of features in a product creeps up as
new potential uses of the product are envisaged.

• It adds to the complexity of a product, which means that you are
likely to introduce bugs and security vulnerabilities into the software.

• It also usually makes the user interface more complex.

Lakshmi M B

• Feature creep happens for 3 reasons:
1. Product managers and marketing executives discuss the functionality they

need with a range of different product users. Different users have slightly
different needs or may do the same thing but in slightly different ways.

2. Competitive products are introduced with slightly different functionality to
your product. There is marketing pressure to include comparable
functionality so that market share is not lost to these competitors. This can
lead to “feature wars,” where competing products become more and more
bloated as they replicate the features of their competitors.

3. The product tries to support both experienced and inexperienced users.
Easy ways of implementing common actions are added for inexperienced
users and the more complex features to accomplish the same thing are
retained because experienced users prefer to work that way.

Lakshmi M B

• To avoid feature creep, the product manager and the development
team should review all feature proposals and compare new proposals
to features that have already been accepted for implementation.

Lakshmi M B

Feature Derivation

• Include:
• a feature that allows users to access and use existing web-based resources;

• a feature that allows the system to exist in multiple different configurations;

• a feature that allows user configuration of the system to create a specific environment.

• The approach of highlighting phrases in a narrative description can be used
when analyzing scenarios to find system features.

• Feature identification should be a team activity, and as features are
identified, the team should discuss them and generate ideas about related
features.

• Collaborative writing

• Blogs and web pages

Lakshmi M B

The Feature List

• The output of the feature identification process should be a list of

features that you use for designing and implementing your product.

• Add detail when you are implementing the feature.

• You can describe a feature from one or more user stories.

• Scenarios and user stories should always be your starting point for

identifying product features.

Lakshmi M B

Design concepts
• Software design encompasses the set of principles, concepts, and

practices that lead to the development of a high-quality system or
product.

• The goal of design is to produce a model or representation that
exhibits firmness, commodity, and delight.

• It changes continually as new methods, better analysis, and broader
understanding evolve.

Lakshmi M B

DESIGN WITHIN THE CONTEXT OF
SOFTWARE ENGINEERING

• Beginning once software requirements have been analyzed and
modeled, software design is the last software engineering action
within the modeling activity and sets the stage for construction (code
generation and testing).

• The flow of information during software design is illustrated in the
figure.

Lakshmi M B

Lakshmi M B

• Data/Class Design→ transforms class models into design class
realizations and the requisite data structures required to implement
the software. The objects and relationships provide the basis for the
data design activity.

• Architectural Design → defines the relationship between major
structural elements of the software, the architectural styles and
patterns that can be used to achieve the requirements defined for the
system, and the constraints that affect the way in which architecture
can be implemented. The architectural design representation—the
framework of a computer-based system—is derived from the
requirements model.

Lakshmi M B

• Interface Design → describes how the software communicates with
systems that interoperate with it, and with humans who use it. An
interface implies a flow of information (e.g., data and/or control) and
a specific type of behavior. Therefore, usage scenarios and behavioral
models provide much of the information required for interface
design.

• Component-Level Design → transforms structural elements of the
software architecture into a procedural description of software
components. Information obtained from the class-based models and
behavioral models serve as the basis for component design.

Lakshmi M B

DESIGN process
• Software design is an iterative process through which requirements are

translated into a “blueprint” for constructing the software.

Software Quality Guidelines and Attributes
• 3 characteristics used for evaluation of quality:

1. The design should implement all of the explicit requirements contained in the
requirements model, and it must accommodate all of the implicit requirements desired by
stakeholders.

2. The design should be readable and understandable for those who generate code and test
the software.

3. The design should provide a complete picture of the software, addressing the data,
functional, and behavioral domains from an implementation perspective.

Lakshmi M B

Quality Guidelines:
1. A design should exhibit an architecture that (1) has been created using recognizable

architectural styles or patterns, (2) is composed of components that exhibit good design, and (3)
can be implemented in an evolutionary fashion, thereby facilitating implementation and testing.

2. A design should be modular; i.e., the software should be logically partitioned into elements or
subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and
components.

4. A design should lead to data structures that are appropriate for the classes to be implemented
and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between
components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information obtained
during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Lakshmi M B

Quality Attributes:
1. Functionality→ assessed by evaluating the feature set and capabilities of

the program, the generality of the functions that are delivered, and the

security of the overall system.

2. Usability→ assessed by considering human factors , overall aesthetics,

consistency, and documentation.

3. Reliability→ evaluated by measuring the frequency and severity of failure,

the accuracy of output results, the mean-time-to-failure (MTTF), the ability

to recover from failure, and the predictability of the program.

4. Performance→measured using processing speed, response time, resource

consumption, throughput, and efficiency.

5. Supportability→ combines extensibility, adaptability, and serviceability.

Lakshmi M B

Design concepts
• An overview of fundamental software design concepts:

1. Abstraction

2. Architecture

3. Patterns

4. Separation of Concerns

5. Modularity

6. Information Hiding

7. Functional Independence

8. Refinement

9. Aspects

10. Refactoring

11. Object-Oriented Design Concepts

12. Design Classes

13. Dependency Inversion

14. Design for Test

Lakshmi M B

1. Abstraction:
• At the highest level of abstraction, a solution is stated in broad terms using

the language of the problem environment.

• At lower levels of abstraction, a more detailed description of the solution is
provided.

• Create both procedural and data abstractions.

• Procedural abstraction → a sequence of instructions that have a specific
and limited function.

• Data abstraction → a named collection of data that describes a data
object.

Lakshmi M B

2. Architecture:
• Architecture is the structure or organization of program components (modules),

the manner in which these components interact, and the structure of data that
are used by the components.

• One goal of software design is to derive an architectural rendering of a system.

• A set of architectural patterns enables a software engineer to reuse design-level
concepts.

• Structural properties → “the components of a system (e.g., modules, objects,
filters) and the manner in which those components are packaged and interact
with one another.”

• Extra-functional properties → address “how the design architecture achieves
requirements for performance, capacity, reliability, security, adaptability, and
other system characteristics.

• Families of related systems → “draw upon repeatable patterns that are
commonly encountered in the design of families of similar systems.”

Lakshmi M B

• Structural models → represent architecture as an organized collection
of program components.

• Framework models→ increase the level of design abstraction by
attempting to identify repeatable architectural design frameworks
(patterns) that are encountered in similar types of applications.

• Dynamic models → address the behavioral aspects of the program
architecture, indicating how the structure or system configuration may
change as a function of external events.

• Process models → focus on the design of the business or technical
process that the system must accommodate.

• Functional models → used to represent the functional hierarchy of a
system.

Lakshmi M B

3. Patterns:
• A named nugget of insight which conveys the essence of a proven solution

to a recurring problem within a certain context amidst competing
concerns.

• Describes a design structure that solves a particular design problem within
a specific context and amid “forces” that may have an impact on the
manner in which the pattern is applied and used.

• These provide a description that enables a designer to determine:

(1) whether the pattern is applicable to the current work,

(2) whether the pattern can be reused (hence, saving design time), and

(3) whether the pattern can serve as a guide for developing a similar, but
functionally or structurally different pattern.

Lakshmi M B

4. Separation of Concerns:
• Suggests that any complex problem can be more easily handled if it is

subdivided into pieces that can each be solved and/or optimized
independently.

• Concern→ a feature or behavior that is specified as part of the
requirements model for the software.

• By separating concerns into smaller, and therefore more manageable
pieces, a problem takes less effort and time to solve.

Lakshmi M B

5. Modularity:
• Software is divided into separately named and addressable components,

sometimes called modules, that are integrated to satisfy problem
requirements.

• Modularity→ the single attribute of software that allows a program to be
intellectually manageable”.

Lakshmi M B

6. Information Hiding :
• The principle of information hiding suggests that modules should be

specified and designed so that information (algorithms and data)
contained within a module is inaccessible to other modules that have no
need for such information.

• The intent of information hiding is to hide the details of data structures
and procedural processing behind a module interface. Knowledge of the
details need not be known by users of the module.

Lakshmi M B

7. Functional Independence :
• Functional independence is achieved by developing modules with “ single-

minded” function and an “aversion” to excessive interaction with other
modules.

• Functional independence is a key to good design, and design is the key to
software quality.

• Independence is assessed using 2 qualitative criteria:

1. Cohesion→ an indication of the relative functional strength of a module.

2. Coupling→ an indication of the relative interdependence among modules.

Lakshmi M B

8. Refinement :
• Stepwise refinement is a top-down design strategy.

• It is actually a process of elaboration.

• You begin with a statement of function (or description of information) that
is defi ned at a high level of abstraction.

• You then elaborate on the original statement, providing more and more
detail as each successive refinement (elaboration) occurs.

• Abstraction and refinement are complementary concepts. Abstraction
enables you to specify procedure and data internally but suppress the
need for “outsiders” to have knowledge of low-level details. Refinement
helps you to reveal low-level details as design progresses

Lakshmi M B

9. Aspects :
• As design begins, requirements are refined into a modular design

representation.

• Consider 2 requirements, A and B. Requirement A crosscuts requirement B
“if a software decomposition [refinement] has been chosen in which B
cannot be satisfied without taking A into account”.

• An aspect is a representation of a crosscutting concern.

• An aspect is implemented as a separate module (component) rather than
as software fragments.

Lakshmi M B

10. Refactoring :
• A reorganization technique that simplifies the design (or code) of a

component without changing its function or behavior.

• Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code [design] yet improves its
internal structure.

• When software is refactored, the existing design is examined for
redundancy, unused design elements, inefficient or unnecessary
algorithms, poorly constructed or inappropriate data structures, or any
other design failure that can be corrected to yield a better design.

Lakshmi M B

11. Object-Oriented Design Concepts :
• OO design concepts –

• classes and objects,

• inheritance,

• messages, and

• polymorphism.

Lakshmi M B

12. Design Classes:
• These refine the analysis classes by providing design detail that will enable the

classes to be implemented, and implement a software infrastructure that
supports the business solution.

• 5 different types of design classes:

1. User interface classes → define all abstractions that are necessary for human-
computer interaction (HCI) and often implement the HCI in the context of a metaphor.

2. Business domain classes → identify the attributes and services (methods) that are
required to implement some element of the business domain that was defined by one
or more analysis classes.

3. Process classes→ implement lower-level business abstractions required to fully
manage the business domain classes.

4. Persistent classes → represent data stores (e.g., a database) that will persist beyond
the execution of the software.

5. System classes→ implement software management and control functions that enable
the system to operate and communicate within its computing environment and with
the outside world.

Lakshmi M B

• 4 characteristics of a well-formed design class:
1. Complete and sufficient

2. Primitiveness

3. High cohesion

4. Low coupling

Lakshmi M B

13. Dependency Inversion:

• The dependency inversion principle states: High-level modules (classes)

should not depend [directly] upon low-level modules. Both should depend

on abstractions. Abstractions should not depend on details. Details should

depend on abstractions.

14. Design for Test:

• Whether to design and then test, or test before implementing a code.

Lakshmi M B

The Design model

Lakshmi M B

• The design model can be viewed in two different dimensions:

1. Process dimension → indicates the evolution of the design model as
design tasks are executed as part of the software process.

2. Abstraction dimension → represents the level of detail as each element
of the analysis model is transformed into a design equivalent and then
refined iteratively.

• The design model has 4 major elements:
1. Data Design Elements,

2. Architectural Design Elements,

3. Interface Design Elements, and

4. Component-Level Design Elements.

Lakshmi M B

1. Data Design Elements:
• Data design (or data architecting) creates a model of data and/or information that

is represented at a high level of abstraction (the customer/user’s view of data).

• Then refined into progressively more implementation-specific representations
that can be processed by the computer-based system.

• At the program-component level, the design of data structures and the associated
algorithms is essential to the creation of high- quality applications.

• At the application level, the translation of a data model (derived as part of
requirements engineering) into a database is pivotal to achieving the business
objectives of a system.

• At the business level, the collection of information stored in disparate databases
and reorganized into a “data warehouse” enables data mining or knowledge
discovery that can have an impact on the success of the business itself.

Lakshmi M B

2. Architectural Design Elements:
• The architectural design for software is the equivalent to the floor plan of a

house.

• The architectural model is derived from 3 sources:
1. information about the application domain for the software to be built;

2. specific requirements model elements such as use cases or analysis classes, their
relationships and collaborations for the problem at hand; and

3. the availability of architectural styles and patterns.

• The architectural design element is usually depicted as a set of
interconnected subsystems, often derived from analysis packages within
the requirements model.

• Each subsystem may have its own architecture.

Lakshmi M B

3. Interface Design Elements:
• The interface design for software is analogous to a set of detailed drawings

(and specifications) for the doors, windows, and external utilities of a
house.

• The interface design elements for software depict information flows into
and out of a system and how it is communicated among the components
defined as part of the architecture.

• There are 3 important elements of interface design:
1. the user interface (UI),

2. external interfaces to other systems, devices, networks, or other producers or
consumers of information, and

3. internal interfaces between various design components.

• These interface design elements allow the software to communicate
externally and enable internal communication and collaboration among
the components that populate the software architecture.

Lakshmi M B

4. Component-Level Design Elements:
• The component-level design for software is the equivalent to a set of

detailed drawings (and specifications) for each room in a house.

• The component-level design for software fully describes the internal
detail of each software component.

• To accomplish this, the component-level design defines data structures
for all local data objects and algorithmic detail for all processing that
occurs within a component and an interface that allows access to all
component operations (behaviors).

• The design details of a component can be modeled at many different
levels of abstraction.

Lakshmi M B

4. Deployment-Level Design Elements:
• Deployment-level design elements indicate how software functionality and

subsystems will be allocated within the physical computing environment
that will support the software.

Lakshmi M B

Architectural design

1. What is Architecture?
• The software architecture of a program or computing system is the

structure or structures of the system, which comprise software
components, the externally visible properties of those components, and
the relationships among them.

• Software architecture must model the structure of a system and the
manner in which data and procedural components collaborate with one
another.

Software Architecture

Lakshmi M B

• The architecture is not the operational software. Rather, it is a
representation that enables you to:

1. analyze the effectiveness of the design in meeting its stated requirements,

2. consider architectural alternatives at a stage when making design changes is still
relatively easy, and

3. reduce the risks associated with the construction of the software.

• In the context of architectural design, a software component can be
something as simple as a program module or an object- oriented class, but
it can also be extended to include databases and “middleware” that enable
the configuration of a network of clients and servers.

• The properties of components are those characteristics that are necessary
to an understanding of how the components interact with other
components.

• A design is an instance of an architecture similar to an object being an
instance of a class.

Lakshmi M B

2. Why is Architecture Important?

• Three key reasons:
1. Software architecture provides a representation that facilitates

communication among all stakeholders.

2. The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows.

3. Architecture “constitutes a relatively small, intellectually
graspable model of how the system is structured and how its
components work together”.

Lakshmi M B

3. Architectural Descriptions
• An architectural description is actually a set of work products that reflect

different views of the system.

• Metaphors represent different views of the same architecture, that stakeholders
use to understand the term software architecture.

• Blueprint metaphor → write programs to implement a system.

• Language metaphor → views architecture as a facilitator of communication
across stakeholder groups.

• Decision metaphor → represents architecture as the product of decisions
involving trade-offs among properties such as cost, usability, maintainability, and
performance.

• Literature metaphor → used to document architectural solutions constructed in
the past.

Lakshmi M B

3. Architectural Decisions

Lakshmi M B

Architectural styles
• It is a transformation that is imposed on the design of an entire system. The

intent is to establish a structure for all components of the system.

• The software that is built for computer-based systems exhibits one of many

architectural styles. Each style describes a system category that

encompasses:

1. a set of components that perform a function required by a system,

2. a set of connectors that enable “communication, coordination and cooperation”

among components,

3. constraints that define how components can be integrated to form the system, and

4. semantic models that enable a designer to understand the overall properties of a

system by analyzing the known properties of its constituent parts.
Lakshmi M B

• An architectural pattern also imposes a transformation on the design

of an architecture.

• A pattern differs from a style in a number of fundamental ways:

1. the scope of a pattern is less broad, focusing on one aspect of the

architecture rather than the architecture in its entirety,

2. a pattern imposes a rule on the architecture, describing how the software

will handle some aspect of its functionality at the infrastructure level

3. architectural patterns tend to address specific behavioral issues within the

context of the architecture.

• Patterns can be used in conjunction with an architectural style to

shape the overall structure of a system.

Lakshmi M B

1. A Brief Taxonomy of Architectural Styles

• Data-centered Architectures:

Lakshmi M B

• A data store resides at the center of this architecture and is accessed
frequently by other components.

• Client software accesses a central repository.

• In some cases the data repository is passive i.e., client software accesses
the data independent of any changes to the data or the actions of other
client software.

• A variation on this approach transforms the repository into a “blackboard”
that sends notifications to client software when data of interest to the
client changes.

• This promotes integrability.

• Data can be passed among clients using the blackboard mechanism (i.e.,
the blackboard component serves to coordinate the transfer of information
between clients).

Lakshmi M B

•Data-flow Architectures:

Lakshmi M B

• This architecture is applied when input data are to be transformed through

a series of computational or manipulative components into output data.

• A pipe-and-filter pattern has a set of components, called filters, connected

by pipes that transmit data from one component to the next.

• Each filter works independently of those components upstream and

downstream, is designed to expect data input of a certain form, and

produces data output (to the next filter) of a specified form.

• Filter does not require knowledge of the workings of its neighboring filters.

• If the data flow degenerates into a single line of transforms, it is termed

batch sequential. This structure accepts a batch of data and then applies a

series of sequential components (filters) to transform it.

Lakshmi M B

•Call and Return Architectures:
• This architectural style enables you to achieve a program structure

that is relatively easy to modify and scale.

• A number of substyles exist within this category:

a) Main program/subprogram architectures → This classic program

structure decomposes function into a control hierarchy where a “main”

program invokes a number of program components, which in turn may

invoke still other components.

b) Remote procedure call architectures → The components of a main

program/ subprogram architecture are distributed across multiple

computers on a network.

Lakshmi M B

Lakshmi M B

•Object-Oriented Architectures:
• The components of a system encapsulate data and the operations that must

be applied to manipulate the data.

• Communication and coordination between components are accomplished via
message passing.

• Layered Architectures:
• A number of different layers are defined, each accomplishing operations that

progressively become closer to the machine instruction set.

• At the outer layer, components service user interface operations.

• At the inner layer, components perform operating system interfacing.

• Intermediate layers provide utility services and application software
functions.

Lakshmi M B

Lakshmi M B

• 2 complementary concepts for choosing the right architecture style:

1. Problem frames → describe characteristics of recurring problems, without being
distracted by references to details of domain knowledge or programming solution
implementations.

2. Domain-driven design → suggests that the software design should reflect the domain and
the domain logic of the business problem you want to solve with your application.

• A problem frame is a generalization of a class of problems that might be used to
solve the problem at hand.

• 5 fundamental problem frames:

1. simple work pieces (tools),

2. required behavior (data-centered),

3. commanded behavior (command processor),

4. information display (observer), and

5. transformation (pipe and filter variants).

Lakshmi M B

2. Architectural Patterns
• Architectural patterns address an application-specific problem within a

specific context and under a set of limitations and constraints.

• The pattern proposes an architectural solution that can serve as the basis for
architectural design.

3. Organization and Refinement
• It is important to establish a set of design criteria that can be used to assess

an architectural design that is derived.

• Certain questions based on Control and Data provide insight into an
architectural style.

• These questions provide the designer with an early assessment of design
quality and lay the foundation for more detailed analysis of the architecture.

Lakshmi M B

Architectural considerations
1. Economy→Many software architectures suffer from unnecessary complexity driven by the

inclusion of unnecessary features or non-functional requirements.

2. Visibility→ Poor visibility arises when important design and domain concepts are poorly
communicated to those who must complete the design and implement the system.

3. Spacing→ Separation of concerns in a design without introducing hidden dependencies is a
desirable design concept (sometimes referred to as spacing). Sufficient spacing leads to
modular designs, but too much spacing leads to fragmentation and loss of visibility.

4. Symmetry→ Architectural symmetry implies that a system is consistent and balanced in its
attributes. Symmetric designs are easier to understand, comprehend, and communicate.

5. Emergence→ Emergent, self-organized behavior and control are often the key to creating
scalable, efficient, and economic software architectures.

• These considerations do not exist in isolation. They interact with each other and
are moderated by each other.

Lakshmi M B

Architectural design
• As architectural design begins, context must be established.

• To accomplish this, the external entities that interact with the
software and the nature of their interaction are described.

• This information can generally be acquired from the
requirements model.

• Once context is modeled and all external software interfaces
have been described, you can identify a set of architectural
archetypes.

Lakshmi M B

• Archetype→ an abstraction (similar to a class) that represents one

element of system behavior.

• The set of archetypes provides a collection of abstractions that must

be modeled architecturally if the system is to be constructed, but the

archetypes themselves do not provide enough implementation detail.

• Therefore, the designer specifies the structure of the system by

defining and refining software components that implement each

archetype.

• This process continues iteratively until a complete architectural

structure has been derived.

Lakshmi M B

1. Representing the System in Context

• At the architectural design level, a software architect uses an

architectural context diagram (ACD) to model the manner in which

software interacts with entities external to its boundaries.

• The generic structure of the architectural context diagram is

illustrated in the figure.

Lakshmi M B

Lakshmi M B

• The systems that interoperate with the target system are represented
as:

1. Superordinate systems → those systems that use the target system as part
of some higher-level processing scheme.

2. Subordinate systems → those systems that are used by the target system
and provide data or processing that are necessary to complete target
system functionality.

3. Peer-level systems → those systems that interact on a peer-to-peer basis
(i.e., information is either produced or consumed by the peers and the
target system.

4. Actors→ entities (people, devices) that interact with the target system by
producing or consuming information that is necessary for requisite
processing.

• Each of these external entities communicates with the target system
through an interface.

Lakshmi M B

Lakshmi M B

2. Defining Archetypes

• An archetype is a class or pattern that represents a core abstraction that is critical
to the design of an architecture for the target system.

• Archetypes are the abstract building blocks of an architectural design.

• Ex: SafeHome home security function, the following archetypes are defined:

1. Node → Represents a cohesive collection of input and output elements of the home
security function.

2. Detector → An abstraction that encompasses all sensing equipment that feeds
information into the target system.

3. Indicator→ An abstraction that represents all mechanisms for indicating that an alarm
condition is occurring.

4. Controller→ An abstraction that depicts the mechanism that allows the arming or
disarming of a node. If controllers reside on a network, they have the ability to
communicate with one another.

Lakshmi M B

3. Refining the Architecture into Components
• As the software architecture is refined into components, the structure of

the system begins to emerge.

• The application domain is one source for the derivation and refinement of
components.

• Another source is the infrastructure domain.

• The architecture must accommodate many infrastructure components that
enable application components but have no business connection to the
application domain.

• The interfaces depicted in the architecture context diagram imply one or
more specialized components that process the data that flows across the
interface.

Lakshmi M B

• Ex: SafeHome home security function, you might define the
set of top-level components that address the following
functionality:

1. External communication management → coordinates
communication of the security function with external entities
such as other Internet-based systems and external alarm
notification.

2. Control panel processing →manages all control panel
functionality.

3. Detector management → coordinates access to all detectors
attached to the system.

4. Alarm processing → verifies and acts on all alarm conditions.
Lakshmi M B

4. Describing Instantiations of the System

• Instantiation of the architecture → the architecture is applied to a specific

problem with the intent of demonstrating that the structure and

components are appropriate.

5. Architectural Design for Web Apps

• WebApps→ are client-server applications typically structured using multi-

layered architectures, including:

1. a user interface or view layer,

2. a controller layer which directs the flow of information to and from the client

browser based on a set of business rules, and

3. a content or model layer that may also contain the business rules for the WebApp.

Lakshmi M B

• The user interface for a WebApp is designed around the
characteristics of the web browser running on the client machine.

• The architectural design of a WebApp is also influenced by the
structure of the content that needs to be accessed by the client.

• The architectural components (Web pages) of a WebApp are designed
to allow control to be passed to other system components, allowing
very flexible navigation structures.

• The physical location of media and other content resources also
influences the architectural choices made by software engineers.

Lakshmi M B

6. Architectural Design for Mobile Apps
• Mobile apps are typically structured using multi-layered architectures, including:

1. a user interface layer,

2. a business layer, and

3. a data layer.

• Mobile devices differ from one another in terms of their physical characteristics, software, and
hardware. Each of these attributes shapes the direction of the architectural alternatives that can
be selected.

• A number of considerations that can influence the architectural design of a mobile app are:

1. the type of web client (thin or rich) to be built,

2. the categories of devices (e.g., smartphones, tablets) that are supported,

3. the degree of connectivity (occasional or persistent) required,

4. the bandwidth required,

5. the constraints imposed by the mobile platform,

6. the degree to which reuse and maintainability are important, and

7. device resource constraints (e.g., battery life, memory size, processor speed).

Lakshmi M B

Component level design

What is a Component?

• A component is a modular building block for computer software.

• The OMG Unified Modeling Language Specification defines a
component as “a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of
interfaces.”

Lakshmi M B

1. An Object-Oriented View

• From an object-oriented viewpoint, a component is a set of
collaborating classes.

• Each class within a component has been fully elaborated to include all
attributes and operations that are relevant to its implementation.

• As part of the design elaboration, all interfaces must also be defined.

• Analysis modeling and design modeling are both iterative actions.
Elaborating the original analysis class may require additional analysis
steps, which are then followed with design modeling steps to
represent the elaborated design class (the details of the component).

Lakshmi M B

Lakshmi M B

• The elaboration activity is applied to every component defined as
part of the architectural design.

• Once it is completed, further elaboration is applied to each attribute,
operation, and interface.

• The data structures appropriate for each attribute must be specified.

• In addition, the algorithmic detail required to implement the
processing logic associated with each operation is designed.

• Finally, the mechanisms required to implement the interface are
designed. For object-oriented software, this may encompass the
description of all messaging that is required to effect communication
between objects within the system.

Lakshmi M B

2. The Traditional View

• In the context of traditional software engineering, a component is a
functional element of a program that incorporates processing logic, the
internal data structures that are required to implement the processing
logic, and an interface that enables the component to be invoked and data
to be passed to it.

• A traditional component, also called a module, resides within the software
architecture and serves one of three important roles:

1. a control component that coordinates the invocation of all other problem domain
components,

2. a problem domain component that implements a complete or partial function
that is required by the customer, or

3. an infrastructure component that is responsible for functions that support the
processing required in the problem domain.

Lakshmi M B

• Like object-oriented components, traditional software components
are derived from the analysis model.

• The component elaboration element of the analysis model serves as
the basis for the derivation.

• Each component represented in the component hierarchy is mapped
into a module hierarchy.

• Control components (modules) reside near the top of the hierarchy
(program architecture), and problem domain components tend to
reside toward the bottom of the hierarchy.

• To achieve effective modularity, design concepts like functional
independence are applied as components are elaborated.

Lakshmi M B

Lakshmi M B

3. A Process-Related View

• The object-oriented and traditional views of component-level design →
you have to create a new component based on specifications derived from
the requirements model.

• A catalog of proven design or code-level components is made available to
you as design work proceeds.

• As the software architecture is developed, you choose components or
design patterns from the catalog and use them to populate the
architecture.

• Because these components have been created with reusability in mind, a
complete description of their interface, the function(s) they perform, and
the communication and collaboration they require are all available to you.

Lakshmi M B

Designing class-based Components

• When an object-oriented software engineering approach is chosen,
component-level design focuses on the elaboration of problem domain
specific classes and the definition and refinement of infrastructure classes
contained in the requirements model.

• The detailed description of the attributes, operations, and interfaces used
by these classes is the design detail required as a precursor to the
construction activity.

Lakshmi M B

1. Basic Design Principles

• 4 basic design principles:
1. The Open-Closed Principle (OCP)

2. The Liskov Substitution Principle (LSP)

3. Dependency Inversion Principle (DIP)

4. The Interface Segregation Principle (ISP)

• Additional design principles:
1. The Release Reuse Equivalency Principle (REP)

2. The Common Closure Principle (CCP)

3. The Common Reuse Principle (CRP)

Lakshmi M B

The Open-Closed Principle (OCP):

• “ A module [component] should be open for extension but closed for
modification”.

• Stated simply, you should specify the component in a way that allows it to be
extended (within the functional domain that it addresses) without the need
to make internal (code or logic-level) modifications to the component itself.

• To accomplish this, you create abstractions that serve as a buffer between the
functionality that is likely to be extended and the design class itself.

• Ex: assume that the SafeHome security function makes use of a Detector class
that must check the status of each type of security sensor. If internal
processing logic is implemented as a sequence of if-then-else constructs, each
addressing a different sensor type, the addition of a new sensor type will
require additional internal processing logic. This is a violation of OCP.

Lakshmi M B

Lakshmi M B

The Liskov Substitution Principle (LSP):

• “ Subclasses should be substitutable for their base classes”.

• A component that uses a base class should continue to function properly if a class
derived from the base class is passed to the component instead.

• A “contract” is a precondition that must be true before the component uses a base
class and a postcondition that should be true after the component uses a base class.

• When you create derived classes, be sure they conform to the pre- and
postconditions.

Dependency Inversion Principle (DIP):

• “ Depend on abstractions. Do not depend on concretions”.

• The more a component depends on other concrete components (rather than on
abstractions such as an interface), the more difficult it will be to extend.

Lakshmi M B

The Interface Segregation Principle (ISP):

• “Many client-specific interfaces are better than one general purpose
interface”.

• There are many instances in which multiple client components use the
operations provided by a server class.

• ISP suggests that you should create a specialized interface to serve each
major category of clients.

• Only those operations that are relevant to a particular category of clients
should be specified in the interface for that client.

• If multiple clients require the same operations, it should be specified in each
of the specialized interfaces.

Lakshmi M B

• Ex: the FloorPlan class that is used for the SafeHome security and surveillance
functions.

• For the security functions, FloorPlan is used only during configuration activities
and uses the operations placeDevice(), showDevice(), groupDevice(), and
removeDevice() → to place, show, group, and remove sensors from the floor
plan.

• The SafeHome surveillance function uses the 4 operations noted for security, but
also requires special operations to manage cameras: showFOV() and
showDeviceID().

• Hence, the ISP suggests that client components from the two SafeHome functions
have specialized interfaces defined for them.

• The interface for security would encompass only the operations placeDevice(),
showDevice(), groupDevice(), and removeDevice().

• The interface for surveillance would incorporate the operations placeDevice(),
showDevice(), groupDevice(), and removeDevice(), along with showFOV() and
showDeviceID()

Lakshmi M B

The Release Reuse Equivalency Principle (REP):

• “The granule of reuse is the granule of release”.

• When classes or components are designed for reuse, an implicit contract is
established between the developer of the reusable entity and the people who will
use it.

• Rather than addressing each class individually, it is often advisable to group reusable
classes into packages that can be managed and controlled as newer versions evolve.

The Common Closure Principle (CCP):

• “Classes that change together belong together.”

• When classes are packaged as part of a design, they should address the same
functional or behavioral area.

• When some characteristic of that area must change, it is likely that only those classes
within the package will require modification. This leads to more effective change
control and release management.

Lakshmi M B

The Common Reuse Principle (CRP):

• “Classes that aren’t reused together should not be grouped together”.

• When one or more classes with a package changes, the release number of the
package changes.

• All other classes or packages that rely on the package that has been changed
must now update to the most recent release of the package and be tested.

• If classes are not grouped cohesively, it is possible that a class with no
relationship to other classes within a package is changed. This will precipitate
unnecessary integration and testing.

• For this reason, only classes that are reused together should be included
within a package.

Lakshmi M B

2. Component-Level Design Guidelines

• These guidelines are apply to components, their interfaces, and the dependencies and
inheritance characteristics that have an impact on the resultant design.

1. Components: Naming conventions should be established for components that are specified as
part of the architectural model and then refined and elaborated as part of the component-level
model. Architectural component names should be drawn from the problem domain and should
have meaning to all stakeholders who view the architectural model.

2. Interfaces: provide important information about communication and collaboration.
Recommendations that are intended to simplify the visual nature of UML component diagrams
: (1) lollipop representation of an interface should be used in lieu of the more formal UML box
and dashed arrow approach, when diagrams grow complex; (2) for consistency, interfaces
should flow from the left-hand side of the component box; (3) only those interfaces that are
relevant to the component under consideration should be shown, even if other interfaces are
available.

3. Dependencies and Inheritance: For improved readability, it is a good idea to model
dependencies from left to right and inheritance from bottom (derived classes) to top (base
classes). In addition, components’ interdependencies should be represented via interfaces,
rather than by representation of a component-to-component dependency.

Lakshmi M B

3. Cohesion

• It implies that a component or class encapsulates only attributes and operations

that are closely related to one another and to the class or component itself.

• Different types of cohesion:

1. Functional: occurs when a module performs one and only one computation and then

returns a result.

2. Layer: occurs when a higher layer accesses the services of a lower layer, but lower layers

do not access higher layers.

3. Communicational: All operations that access the same data are defi ned within one class.

• Classes and components that exhibit functional, layer, and communicational

cohesion are relatively easy to implement, test, and maintain.

Lakshmi M B

4. Coupling
• Coupling is a qualitative measure of the degree to which classes are connected to one another.

• As classes (and components) become more interdependent, coupling increases.

• Class coupling can manifest itself in a variety of ways:

1. Content coupling occurs when one component “surreptitiously modifies data that is
internal to another component”. This violates information hiding—a basic design
concept.

2. Control coupling occurs when operation A() invokes operation B() and passes a control
flag to B. The control flag then “directs” logical flow within B. The problem with this
form of coupling is that an unrelated change in B can result in the necessity to change
the meaning of the control flag that A passes. If this is overlooked, an error will result.

3. External coupling occurs when a component communicates or collaborates with
infrastructure components (e.g., operating system functions, database capability,
telecommunication functions). Although this type of coupling is necessary, it should be
limited to a small number of components or classes within a system.

Lakshmi M B

Conducting component-level design

• The following steps represent a typical task set for component-level design, when it is

applied for an object-oriented system:

• Step 1: Identify all design classes that correspond to the problem domain.

Using the requirements and architectural model, each analysis class and architectural component is

elaborated.

• Step 2. Identify all design classes that correspond to the infrastructure domain.

These classes are not described in the requirements model and are often missing from the

architecture model, but they must be described at this point. The classes and components in this

category include GUI components, operating system components, and object and data management

components.

Lakshmi M B

• Step 3: Elaborate all design classes that are not acquired as reusable

components.

Elaboration requires that all interfaces, attributes, and operations necessary to

implement the class be described in detail. Design heuristics (e.g., component

cohesion and coupling) must be considered as this task is conducted.

• Step 3a. Specify message details when classes or components collaborate.

The requirements model makes use of a collaboration diagram to show how analysis classes

collaborate with one another. Although this design activity is optional, it can be used as a

precursor to the specification of interfaces that show how components within the system

communicate and collaborate. Messages are passed between objects.

Lakshmi M B

• Step 3b. Identify appropriate interfaces for each component.

Within the context of component-level design, a UML interface is “a group of externally visible (i.e.,
public) operations. The interface contains no internal structure, it has no attributes, no
associations. . .” Stated more formally, an interface is the equivalent of an abstract class that provides
a controlled connection between design classes. Every operation within the abstract class (the
interface) should be cohesive.

• Step 3c. Elaborate attributes and define data types and data structures required to
implement them.

In general, data structures and types used to define attributes are defined within the context of the
programming language that is to be used for implementation. UML defines an attribute’s data type
using the following syntax:

name : type-expression = initial-value {property string}

where name is the attribute name, type expression is the data type, initial value is the value that the
attribute takes when an object is created, and property-string defines a property or characteristic of
the attribute.

Lakshmi M B

• Step 3d. Describe processing flow within each operation in detail.

This may be accomplished using a programming language-based pseudocode or with a UML activity

diagram. Each software component is elaborated through a number of iterations that apply the

stepwise refinement concept. The first iteration defines each operation as part of the design class. In

every case, the operation should be characterized in a way that ensures high cohesion. The next

iteration does little more than expand the operation name.

• Step 4. Describe persistent data sources (databases and files) and identify the

classes required to manage them.

Databases and files normally transcend the design description of an individual component.

In most cases, these persistent data stores are initially specified as part of architectural

design. However, as design elaboration proceeds, it is often useful to provide additional

detail about the structure and organization of these persistent data sources.

Lakshmi M B

• Step 5: Develop and elaborate behavioral representations for a class or component.

UML state diagrams were used as part of the requirements model to represent the externally
observable behavior of the system and the more localized behavior of individual analysis classes.
During component-level design, it is sometimes necessary to model the behavior of a design class.
The dynamic behavior of an object is affected by events that are external to it and the current state of
the object. To understand the dynamic behavior of an object, you should examine all use cases that
are relevant to the design class throughout its life. These use cases provide information that helps
you to delineate the events that affect the object and the states in which the object resides as time
passes and events occur. The transitions between states (driven by events) is represented using a
UML statechart. The transition from one state (represented by a rectangle with rounded corners) to
another occurs as a consequence of an event that takes the form:

Event-name (parameter-list) [guard-condition] / action expression

where event-name identifies the event, parameter-list incorporates data that are associated with the
event, guard-condition is written in Object Constraint Language (OCL) and specifies a condition that
must be met before the event can occur, and action expression defines an action that occurs as the
transition takes place.

Lakshmi M B

• Step 6: Elaborate deployment diagrams to provide additional implementation

detail.

Deployment diagrams are used as part of architectural design and are represented in

descriptor form. In this form, major system functions are represented within the context of

the computing environment that will house them. During component-level design,

deployment diagrams can be elaborated to represent the location of key packages of

components.

• Step 7: Refactor every component-level design representation and always

consider alternatives.

Design is an iterative process. The first component-level model you create will not be as

complete, consistent, or accurate as the nth iteration you apply to the model. It is essential

to refactor as design work is conducted.

Lakshmi M B

component-level design for web-
apps

• A WebApp component is :

1. a well-defined cohesive function that manipulates content or provides

computational or data processing for an end user or

2. a cohesive package of content and functionality that provides the end user with

some required capability.

• Therefore, component-level design for WebApps often incorporates

elements of content design and functional design.

Lakshmi M B

1. Content Design at the Component Level

• Content design at the component level focuses on content objects and the
manner in which they may be packaged for presentation to a WebApp end user.

• The formality of content design at the component level should be tuned to the
characteristics of the WebApp to be built.

• In many cases, content objects need not be organized as components and can be
manipulated individually.

• However, as the size and complexity (of the WebApp, content objects, and their
interrelationships) grows, it may be necessary to organize content in a way that
allows easier reference and design manipulation.

• In addition, if content is highly dynamic, it becomes important to establish a clear
structural model that incorporates content components.

Lakshmi M B

2. Functional Design at the Component Level

• WebApp functionality is delivered as a series of components developed in parallel with

the information architecture to ensure consistency.

• We begin by considering both the requirements model and the initial information

architecture and then examining how functionality affects the user’s interaction with the

application, the information that is presented, and the user tasks that are conducted.

• During architectural design, WebApp content and functionality are combined to create a

functional architecture.

• A functional architecture is a representation of the functional domain of the WebApp

and describes the key functional components in the WebApp and how these components

interact with each other.

Lakshmi M B

